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Abstract

The object of this paper is to present a moving mass element so that one may easily perform the dynamic analysis

of an inclined plate subjected to moving loads with the effects of inertia force, Coriolis force and centrifugal

force considered. To this end, the mass, damping and stiffness matrices of the moving mass element, with respect

to the local coordinate system, are derived first by using the principle of superposition and the definition of

shape functions. Next, the last property matrices of the moving mass element are transformed into the global co-

ordinate system and combined with the property matrices of the inclined plate itself to determine the effective overall

property matrices and the instantaneous equations of motion of the entire vibrating system. Because the property matrices

of the moving mass element have something to do with the instantaneous position of the moving load, both the property

matrices of the moving mass element and the effective overall ones of the entire vibrating system are time-dependent. At

any instant of time, solving the instantaneous equations of motion yields the instantaneous dynamic responses of the

inclined plate. For validation, the presented technique is used to determine the dynamic responses of a horizontal

pinned–pinned plate subjected to a moving load and a satisfactory agreement with the existing literature is achieved.

Furthermore, extensive studies on the inclined plate subjected to moving loads reveal that the influences of moving-load

speed, inclined angle of the plate and total number of the moving loads on the dynamic responses of the inclined plate are

significant in most cases, and the effects of Coriolis force and centrifugal force are perceptible only in the case of higher

moving-load speed.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The reports concerning the dynamic behaviour of horizontal plates due to moving or stationary dynamic
loads are abundant [1–13], however, the literature regarding those of inclined plates subjected to moving loads
is limited. Since the existing technique for the moving-load-induced vibrations of horizontal plates cannot be
directly applied to the title problem, this paper aims to extend the technique for those of one-dimensional
inclined beams [14] to the two-dimensional inclined plates, so that the dynamic characteristics of the inclined
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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plates undergoing moving loads, with the effects of inertia force, Coriolis force and centrifugal force
considered, can be easily determined.

First, under the assumption that each moving load is always in contact with the inclined plate, the property
matrices of moving mass element, with respect to the local (xyz) coordinates of the plate element on which the
moving load applies, are derived. Next, the last property matrices are transformed into the ones with respect to
the global ðx̄ȳz̄Þ coordinates of the entire vibrating system and added to the overall mass, damping and
stiffness matrices of the inclined plate itself. Thus, the effects of inertia force, Coriolis force and centrifugal
force, induced by the moving load, can be easily taken into account. Finally, the equations of motion are
solved to yield the dynamic responses of the inclined plate due to moving loads, and the influence of some
factors relating to the title problem are investigated.
2. Moving mass element

With respect to the local coordinates xyz of the inclined plate element on which the moving concentrated
load with mass mc is located, as shown in Fig. 1, the in-plane forces (FIx and FIy) and out-of-plane force (FIz)
at the contact point i induced by mc, due to vibration and curvature of the plate element, are, respectively,
given by [6]

FIx ¼ mc €uix, (1a)

F Iy ¼ mc €uiy, (1b)

FIz ¼ mc½V
2
cxuxx

iz þ 2VcxVcyu
xy
iz þ 2V cx _u

x
iz þ 2V cy _u

y
iz

þ V 2
cyu

yy
iz þ

_Vcxux
iz þ

_Vcyu
y
iz þ €uiz�, ð1cÞ

where uix, uiy and uiz are the displacements of point i in x, y and z directions, while Vcx and Vcy are the
velocities of the moving load mc in x and y directions, respectively. The superscripts x, y and the overhead dot
represent the derivatives with respect to x, y and time t, respectively.

The equivalent nodal forces at the four nodes of the plate element due to the last three inertial forces, FIx,
FIy and FIz, at point i, are given by [15,16]

f k ¼ fkFIx ðk ¼ 1; 7; 13; 19Þ; f k ¼ fkF Iy ðk ¼ 2; 8; 14; 20Þ; f k ¼ 0 ðk ¼ 6; 12; 18; 24Þ, (2a)

f k ¼ fkF Iz ðk ¼ 3; 4; 5; 9; 10; 11; 15; 16; 17; 21; 22; 23Þ, (2b)
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Fig. 1. Equivalent nodal forces of the inclined plate element due to a moving mass mc.
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where fk (k ¼1–24) are the shape functions, and those associated with the non-zero equivalent nodal forces
are given by [12,16]

f1 ¼ f2 ¼ ð1� BÞð1� ZÞ; f3 ¼ ð1þ 2BÞð1� BÞ2ð1þ 2ZÞð1� ZÞ2,

f4 ¼ ð1þ 2BÞð1� BÞ2Zð1� ZÞ2b; f5 ¼ �ð1� BÞ2Bð1þ 2ZÞð1� ZÞ2a; f7 ¼ f8 ¼ ð1� BÞZ,

f9 ¼ ð1þ 2BÞð1� BÞ2ð3� 2ZÞZ2; f10 ¼ �ð1þ 2BÞð1� BÞ2ð1� ZÞZ2b,

f11 ¼ � Bð1� BÞ2ð3� 2ZÞZ2a; f13 ¼ f14 ¼ BZ; f15 ¼ ð3� 2BÞB2ð3� 2ZÞZ2,

f16 ¼ � ð3� 2BÞB2ð1� ZÞZ2b; f17 ¼ ð1� BÞB2ð3� 2ZÞZ2a; f19 ¼ f20 ¼ Bð1� ZÞ,

f21 ¼ ð3� 2BÞB2ð1þ 2ZÞð1� ZÞ2; f22 ¼ ð3� 2BÞB2Zð1� ZÞ2b; f23 ¼ ð1� BÞB2ð1þ 2ZÞð1� ZÞ2a, ð3aÞ

B ¼
xi

a
; Z ¼

yi

b
. (3b)

In the last expressions, a and b, respectively, represent the width and length of the plate element (see Fig. 1),
while xi and yi represent the x and y coordinates of the moving mass mc, respectively.

Based on the definition of shape functions [16], one obtains

uix ¼ f1u1 þ f7u7 þ f13u13 þ f19u19, (4a)

uiy ¼ f2u2 þ f8u8 þ f14u14 þ f20u20, (4b)

uiz ¼ f3u3 þ f4u4 þ f5u5 þ f9u9 þ f10u10 þ f11u11

þ f15u15 þ f16u16 þ f17u17 þ f21u21 þ f22u22 þ f23u23, ð4cÞ

where ui (i ¼ 1, 2, y) are the nodal displacements of the plate element.
Introducing Eqs. (1) and (4) into Eq. (2), and writing the resulting expressions in matrix form, one obtains

ff g ¼ ½m�f €ug þ ½c�f _ug þ ½k�fug, (5)

ff g ¼ ½ f 1 f 2 . . . f 23 f 24 �
T; f €ug ¼ ½ €u1 €u2 . . . €u23 €u24 �

T,

f _ug ¼ ½ _u1 _u2 . . . _u23 _u24 �
T; fug ¼ ½ u1 u2 . . . u23 u24 �

T. (6)

In Eq. (5), all the coefficients of [m]24� 24, [c]24� 24 and [k]24� 24 are equal to zero except

mab ¼ mcfafb ða; b ¼ 1; 7; 13; 19Þ; mab ¼ mcfafb ða;b ¼ 2; 8; 14; 20Þ, (7a)

mab ¼ mcfafb ða;b ¼ 3; 4; 5; 9; 10; 11; 15; 16; 17; 21; 22; 23Þ, (7b)

cab ¼ 2mcVcxfaf
x
b þ 2mcV cyfaf

y
b ða; b ¼ 3; 4; 5; 9; 10; 11; 15; 16; 17; 21; 22; 23Þ, (7c)

kab ¼ mcV2
cxfaf

xx
b þ 2mcV cxV cyfaf

xy
b þmcV 2

cyfaf
yy
b þmc

_V cxfaf
x
b þmc

_Vcyfaf
y
b

ða;b ¼ 3; 4; 5; 9; 10; 11; 15; 16; 17; 21; 22; 23Þ. ð7dÞ

In Eq. (5), [m], [c] and [k] are, respectively, the mass, damping and stiffness matrices of moving mass element

with effects of inertia force, Coriolis force and centrifugal force induced by the moving mass mc considered.
From Eq. (7) and the shape functions, fk (k ¼1–24), one finds that the last property matrices are time-
dependent.

3. Transformation of moving mass element

From Ref. [17], one can obtain the relation between the local nodal displacements ui (i ¼1–24) and the
global ones ūi (i ¼1–24) of the plate element on which the moving concentrated mass mc applies

fug ¼ ½T �fūg, (8)
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where

fug ¼ ½ u1 u2 . . . u23 u24 �
T; fūg ¼ ½ ū1 ū2 . . . ū23 ū24 �

T, (9a)

½T � ¼ dl l l l l l l lc (9b)

with

l ¼

ax bx gx

ay by gy

az bz gz

2
664

3
775,

ax ¼
Dx

L
; bx ¼

Dy

L
; gx ¼

Dz

L
; ay ¼

B1

B
; by ¼

B2

B
; gy ¼

B3

B
,

az ¼ bxgy � gxby; bz ¼ gxay � axgy; gz ¼ axby � bxay,

Dx ¼ x̄s4 � x̄s1; Dy ¼ ȳs4 � ȳs1; Dz ¼ z̄s4 � z̄s1,

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2 þ Dy2 þ Dz2

p
,

B1 ¼ A2Dz� A3Dy; B2 ¼ A3Dx� A1Dz; B3 ¼ A1Dy� A2Dx; B ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
1 þ B2

2 þ B2
3

q
,

A1 ¼ DyDzs � DzDys; A2 ¼ DzDxs � DxDzs; A3 ¼ DxDys � DyDxs,

Dxs ¼ x̄s2 � x̄s1; Dys ¼ ȳs2 � ȳs1; Dzs ¼ z̄s2 � z̄s1. ð10Þ

In Eq. (9b), the symbol d c denotes a diagonal matrix and in Eq. (10), x̄k; ȳk and z̄k, respectively, represent
the global x̄; ȳ; and z̄ coordinates for node k (k ¼ s1; s2; s4) of the plate element (see Fig. 1), while [T] is the
transformation matrix between the local coordinates xyz and the global coordinates ðx̄ȳz̄Þ.

Similarly, the relationship between the nodal forces in local coordinates xyz, fi (i ¼ 1224), and those in
global coordinates ðx̄ȳz̄Þ, f̄ i (i ¼ 1224), is given by

ff g ¼ ½T �ff̄ g ¼ ½T �½ f̄ 1 f̄ 2 . . . f̄ 23 f̄ 24 �
T. (11)

Time derivatives of Eq. (8) lead to

f _ug ¼ ½T �f _̄ug; f €ug ¼ ½T �f €̄ug. (12)

Introducing Eqs. (8), (11) and (12) into Eq. (5) leads to

ff̄ g ¼ ½m̄�f €̄ug þ ½c̄�f _̄ug þ ½k̄�fūg, (13a)

where

½m̄� ¼ ½T �T½m�½T �, (13b)

½c̄� ¼ ½T �T½c�½T �, (13c)

½k̄� ¼ ½T �T½k�½T �. (13d)

In Eqs. (13b)–(13d), ½m̄�; ½c̄� and ½k̄� are, respectively, the mass, damping and stiffness matrices of the moving

mass element with respect to the global ðx̄ȳz̄Þ coordinates of the entire vibrating system. Because [m], [c] and [k]
are time-variant, so are ½m̄�; ½c̄� and ½k̄�.
4. Equations of motion of the entire vibrating system

The equations of motion for a damped inclined plate undergoing moving loads take the form

½M̂�f €̂qg þ ½Ĉ�f _̂qg þ ½K̂ �fq̂g ¼ fF̂g, (14)
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where ½M̂�; ½Ĉ� and ½K̂� are the instantaneous overall mass, damping and stiffness matrices, respectively; f €̂qg, f _̂qg
and fq̂g are the acceleration, velocity and displacement vectors, respectively; while fF̂g is the instantaneous

external force vector.

5. Instantaneous overall property matrices of the entire vibrating system

The instantaneous overall mass, damping and stiffness matrices, ½M̂�; ½Ĉ� and ½K̂ �, appearing in
Eq. (14) are obtained by adding the mass, damping and stiffness matrices of the moving mass

element, ½m̄�; ½c̄� and ½k̄�, to the overall mass, damping and stiffness matrices of the inclined plate itself,
½Mp�; ½Cp� and ½Kp�, i.e.,

½M̂�n�n ¼ ½Mp�n�n þ ½m̄�24�24; ½Ĉ�n�n ¼ ½Cp�n�n þ ½c̄�24�24; ½K̂ �n�n ¼ ½Kp�n�n þ ½k̄�24�24, (15)

where

M̂ij ¼Mp;ij ; Ĉij ¼ Cp;ij ; K̂ij ¼ Kp;ij ði; j ¼ 12nÞ, (16)

except that

M̂sisj
¼Mp;sisj

þ m̄ij ; Ĉsisj
¼ Cp;sisj

þ c̄ij ; K̂sisj
¼ Kp;sisj

þ k̄ij ði; j ¼ 1224Þ. (17)

In the last expressions, n represents the total degree of freedom (dof) of the entire vibrating system and the
subscripts si (i ¼1–24), respectively, represent the numberings for the 24 dof of the four nodes of the plate
element on which the moving load mc applies at time t. The overall damping matrix [Cp] of the plate itself is
determined by using the theory of Rayleigh damping [18]

½Cp� ¼ �1½M̂� þ �2½K̂ �; (18a)

�1 ¼
2OiOjðxiOj � xjOiÞ

O2
j � O2

i

, (18b)

�2 ¼
2ðxjOj � xiOiÞ

O2
j � O2

i

, (18c)

where xi and xj are damping ratios corresponding to any two natural frequencies of the entire vibrating
system, Oi and Oj.
6. Equivalent nodal forces and overall external force vector

Referring to Fig. 1, one has the external force vector ~P due to the moving mass mc

~P ¼ Px
~i þ Py

~j þ Pz
~k (19)

with

Px ¼ �mcggx; Py ¼ �mcggy; Pz ¼ �mcggz, (20)

where ~i; ~j and ~k are, respectively, the unit vectors in x, y and z directions, gx; gy and gz are given by Eq. (10)
and g is the acceleration of gravity.

For the finite element analysis, the last force vector ~P must be replaced by an equivalent nodal force vector

ff ðsÞg ¼ ½ f
ðsÞ
1 f

ðsÞ
2 . . . f

ðsÞ
23 f

ðsÞ
24 �

T. (21)

In Eq. (21), the non-zero coefficients are given by

f
ðsÞ
k ¼ fkPx ðk ¼ 1; 7; 13; 19Þ, (22a)
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f
ðsÞ
k ¼ fkPy ðk ¼ 2; 8; 14; 20Þ, (22b)

f
ðsÞ
k ¼ fkPz ðk ¼ 3; 4; 5; 9; 10; 11; 15; 16; 17; 21; 22; 23Þ, (22c)

where the superscript s refers to the numbering of the plate element.
Eq. (21) denotes the nodal force vector in local xyz coordinates, therefore, the corresponding one in global
ðx̄ȳz̄Þ coordinates is given by

ff̄
ðsÞ
g ¼ ½ f̄

ðsÞ

1 f̄
ðsÞ

2 . . . f̄
ðsÞ

23 f̄
ðsÞ

24 �
T ¼ ½T ��1ff ðsÞg ¼ ½T �Tff ðsÞg. (23)

Since all nodal forces of the entire vibrating system are equal to zero except those at the four nodes of the
sth plate element on which the moving mass mc applies, the overall external force vector fF̂g in Eq. (14) takes
the form

fF̂g ¼ ½ 0 . . . f̄
ðsÞ

1 f̄
ðsÞ

2 . . . f̄
ðsÞ

23 f̄
ðsÞ

24 . . . 0 �T, (24)

where f̄
ðsÞ

i are the si coefficients of fF̂g with si (i ¼1–24) denoting the numberings for the 24 dof of the plate
element.

7. Dynamic responses of the inclined plate due to moving loads

First, the finite element model of the inclined plate is established and the natural frequencies and mode
shapes of the inclined plate itself are calculated by using the Jacobi method [18]. Next, the instantaneous mass,
damping and stiffness matrices, ½m̄�, ½c̄� and ½k̄�, of the moving mass element are calculated using Eq. (13), and
then the instantaneous overall mass, damping and stiffness matrices, ½M̂�; ½Ĉ� and ½K̂ �, and the instantaneous

overall force vector fF̂g of the entire vibrating system at time t are determined using Eqs. (15)–(18) and
Eqs. (19)–(24), respectively. Finally, the Newmark direct integration method [18] is used to solve the equations
of motion, Eq. (14), to determine the dynamic responses of the inclined plate due to moving loads at time t.
Repeating the last steps, one may obtain the responses of the vibrating system at time instants t ¼ tþ j � Dt

(j ¼ 1, 2, 3, y, etc.).

8. Numerical results

The dimensions and physical properties of the pinned–pinned (P–P) rectangular plate studied are (see Fig. 2
with the two opposite sides, AB and CD, pinned): length Lpx ¼ 1.0m, width Lpy ¼ 0.5m, thickness
Lpz ¼ 0.01m, mass density rp ¼ 7820 kg/m3, modulus of elasticity Ep ¼ 206.8GN/m2 and Poisson’s ratio
n ¼ 0:29. The entire plate is modelled with 32 identical 0.125m� 0.125m rectangular plate elements and
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Fig. 2. A horizontal pinned–pinned rectangular plate subjected to a load with mass mc ¼ 2.3 kg moving from side AB to side CD with a

constant speed Vcx ¼ 10.0m/s.
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45 nodes. All results are obtained with acceleration of gravity g ¼ 9.81m/s2, time interval Dt ¼ 0.001 s,
damping ratios x1 ¼ x2 ¼ 0:005 (corresponding to natural frequencies O1 and O2).

8.1. Validation

In this subsection, the dynamic analysis of the horizontal P–P plate (inclined angle y ¼ 0�) subjected to a
moving load with mass mc ¼ 2.3 kg moving from side AB to side CD with a constant speed Vcx ¼ 10.0m/s
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Fig. 3. Time histories for the vertical ðz̄Þ central displacements of the horizontal pinned–pinned (P–P) plate under a moving load with mass

mc ¼ 2.3 kg and Vcx ¼ 10.0m/s.
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a constant speed Vcx.
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(see Fig. 2) is performed. Fig. 3 shows the time histories for the vertical ðz̄Þ displacements of the central
point of the horizontal plate. In which, the solid curve with circles (—J—) and dashed curve with circles
(- -J- -), respectively, represent the responses due to a moving mass and a moving force obtained from
this paper, while the solid curve with crosses (—+—) and dashed curve with crosses (- -+- -),
0.0 0.2 0.4 0.6 0.8 1.00.1 0.3 0.5 0.7 0.9

Axial coordinates of moving 
concentrated mass x(t) / Lpx

-6.0E-005

-4.0E-005

-2.0E-005

0.0E+000

2.0E-005

4.0E-005

-5.0E-005

-3.0E-005

-1.0E-005

1.0E-005

3.0E-005

V
er

tic
al

 (
z)

 d
is

pl
ac

em
en

ts
 o

f t
he

 c
en

tr
al

po
in

t o
f t

he
 in

cl
in

ed
 p

la
te

 (
m

)

Vcx=5.0 m/s

Vcx=10.0 m/s

Vcx=20.0 m/s

(a)

-2.0E-005 0.0E+000 2.0E-00 5 4.0E-00 5 6.0E-005

Horizontal (x) displacements of the central
point of the inclined plate (m)

0.0

0.2

0.4

0.6

0.8

1.0

0.1

0.3

0.5

0.7

0.9

A
xi

al
 c

oo
rd

in
at

es
 o

f m
ov

in
g 

co
nc

en
tr

at
ed

 m
as

s 
x(

t)
 / 
L p

x

Vcx=5.0 m/s

Vcx=10.0 m/s

Vcx=20.0 m/s

(b)

Fig. 5. Influence of moving speed (Vcx) on (a) vertical ðz̄Þ and (b) horizontal ðx̄Þ central displacements of the inclined plate ðy ¼ 40�Þ due to

a moving load with mass mc ¼ 2.3 kg and constant moving speeds Vcx ¼ 5.0, 10.0 and 20.0m/s.
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respectively, represent those obtained by using the theory of Ref. [1]. In view of the good agreement between
the dashed curves (- -J- - and - -+- -) and small differences between the solid curves (—J— and —+—), it is
believed that the presented theory is reliable. Since the effects of Coriolis force and centrifugal force of the
moving mass are neglected in Ref. [1] and they are considered in this subsection, the solid curves are not very
close to each other.
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Fig. 6. Influence of inclined angle (y) on (a) vertical ðz̄Þ and (b) horizontal ðx̄Þ central displacements of the inclined plate due to a load with

mc ¼ 2.3 kg and Vcx ¼ 10.0m/s.
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8.2. Influence of moving-load speed

In this subsection, all conditions for the P–P plate and the moving load are exactly the same as those of the
last subsection except that the plate is inclined an angle y ¼ 40� (cf. Fig. 4) and the load mc ¼ 2.3 kg moves
from the lower-side AB to the upper-side CD of the plate with constant speeds Vcx ¼ 5.0, 10.0 and 20.0m/s,
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Fig. 7. Influence of Ciriolis force on the vertical ðz̄Þ central displacements of the inclined plate ðy ¼ 40�Þ due to a moving load with

mc ¼ 2.3 kg for: (a) Vcx ¼ 5.0m/s, (b) Vcx ¼ 10.0m/s and (c) Vcx ¼ 20.0m/s.
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respectively. The time histories for the vertical ðz̄Þ and horizontal ðx̄Þ displacements of the central point of the
inclined plate are, respectively, shown in Figs. 5(a) and (b). From the figures, one sees that the moving-load speed
has significant influence on the maximum vertical ðz̄Þ and horizontal ðx̄Þ central displacements of the inclined plate.

8.3. Influence of the inclined angle of the plate

Three inclined plates, iplate0, iplate20 and iplate40, with inclined angles y ¼ 01, 201 and 401, respectively, are
studied here. The load with mass mc ¼ 2.3 kg moves from side AB to side CD of the plate with a constant
speed Vcx ¼ 10.0m/s (cf., Fig. 4). Figs. 6(a) and (b) show the vertical ðz̄Þ and horizontal ðx̄Þ central
displacements of the plate, respectively. It is seen that the vertical ðz̄Þ central displacements of the plate
decrease with increasing the inclined angle y and this trend is reversed for the horizontal ðx̄Þ central
displacements of the plate.

8.4. Influence of Coriolis force

Since the effect of Coriolis force due to moving mass appears in the damping matrix [c] of the moving mass

element as seen from Section 2, this effect will disappear if [c] ¼ [0]. The same plate as that of the last
subsection is investigated here and the vertical ðz̄Þ and horizontal ðx̄Þ central displacements of the inclined plate
are shown in Figs. 7 and 8, respectively. From the last figures, one sees that the influence of Coriolis force on
the vertical ðz̄Þ and horizontal ðx̄Þ central displacements of the inclined plate increases with increasing the
moving-load speed. This is because the magnitude of Coriolis force appearing in the damping matrix [c] of the
moving mass element is proportional to the moving-load speed V (see Eq. 7(c)).

8.5. Influence of centrifugal force

Similarly, one can ignore the effect of centrifugal force due to moving mass by setting the stiffness matrix of
the moving mass element to be zero, i.e., [k] ¼ [0]. The same example as that of the last subsection is
investigated and the vertical ðz̄Þ and horizontal ðx̄Þ central displacements of the inclined plate are shown in
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Fig. 8. Influence of Ciriolis force on the horizontal ðx̄Þ central displacements of the inclined plate ðy ¼ 40�Þ due to a moving load with

mc ¼ 2.3 kg for: (a) Vcx ¼ 5.0m/s, (b) Vcx ¼ 10.0m/s and (c) Vcx ¼ 20.0m/s.
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Figs. 9 and 10, respectively. From the last two figures, one sees that the influence of centrifugal force on the
vertical ðz̄Þ and horizontal ðx̄Þ central displacements of the inclined plate also increases with increasing the
moving-load speed, because the magnitude of centrifugal force appearing in the stiffness matrix [k] of the
moving mass element is proportional to the moving-load speed (see Eq. (7d)).
8.6. Dynamic responses due to one, two and three moving loads

The dynamic analysis of the iplate40 subjected to one ðmc2Þ, two ðmc1 and mc3Þ and three ðmc1;mc2 and mc3Þ

identical loads and, respectively, moving from the side AB to the side CD of the inclined plate (see Fig. 11) is
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Fig. 9. Influence of centrifugal force on the vertical ðz̄Þ central displacements of the inclined plate ðy ¼ 40�Þ due to a moving load with

mc ¼ 2.3 kg for: (a) Vcx ¼ 5.0m/s, (b) Vcx ¼ 10.0m/s and (c) Vcx ¼ 20.0m/s.
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Fig. 10. Influence of centrifugal force on the horizontal ðx̄Þ central displacements of the inclined plate ðy ¼ 40�Þ due to a moving load with

mc ¼ 2.3 kg for: (a) Vcx ¼ 5.0m/s, (b) Vcx ¼ 10.0m/s and (c) Vcx ¼ 20.0m/s.
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Fig. 11. An inclined P–P plate ðy ¼ 40�Þ subjected to three concentrated loads ðmc1 ¼ mc2 ¼ mc3 ¼ mc ¼ 2:3kgÞ moving from the lower-

side AB to the upper-side CD of the plate with identical speed Vcx1 ¼ Vcx2 ¼ V cx3 ¼ V cx ¼ 10:0m=s.
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performed here. For each moving load, the mass is mc1 ¼ mc2 ¼ mc3 ¼ mc ¼ 2:3 kg and the speed is
V cx1 ¼ V cx2 ¼ V cx3 ¼ V cx ¼ 10:0m=s. The global coordinates for the initial positions of the three
moving loads are: ðx̄c1; ȳc1; z̄c1Þ ¼ ð0:0m; 0:125m; 0:0 mÞ, ðx̄c2; ȳc2; z̄c2Þ ¼ ð0:0m; 0:250m; 0:0 mÞ and
ðx̄c3; ȳc3; z̄c3Þ ¼ ð0:0m; 0:375m; 0:0 mÞ, while those for the final positions are: ðx̄0c1; ȳ0c1; z̄

0
c1Þ ¼

ð1:0� cos 40�m; 0:125m; 1:0� sin 40�mÞ, ðx̄0c2; ȳ0c2; z̄
0
c2Þ ¼ ð1:0� cos 40�m; 0:250m; 1:0� sin 40�mÞ

and ðx̄0c3; ȳ0c3; z̄
0
c3Þ ¼ ð1:0� cos 40�m; 0:375m; 1:0� sin 40�mÞ.

Figs. 12(a) and (b), respectively, show the time histories of the vertical ðz̄Þ and horizontal ðx̄Þ displacements
of the central point of the iplate40. From the figures, one finds that the ratio between the corresponding
dynamic responses of the plate induced by the single moving load ðmc2Þ, the two moving loads ðmc1 and mc3Þ

and the three moving loads ðmc1;mc2 and mc3Þ is about 1:2:3. This is a reasonable result, because the ratio
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Fig. 12. Time histories for (a) vertical ðz̄Þ and (b) horizontal ðx̄Þ central displacements of the inclined plate ðy ¼ 40�Þ subjected to one ðmc2Þ,

two ðmc1 and mc3Þ and three ðmc1; mc2 and mc3Þ moving loads, respectively, with mc1 ¼ mc2 ¼ mc3 ¼ mc ¼ 2:3 kg and Vcx1 ¼ Vcx2

¼ V cx3 ¼ V cx ¼ 10:0m=s.
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between the total magnitudes of the moving load(s) for the last three cases is 1:2:3 and the path(s)
of the moving load(s) for each case is along or symmetric with respect to the centreline of the inclined plate in
the x-direction.
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9. Conclusions

Using the theory for moving mass element presented in this paper, one can easily study the influence of
moving-load-induced inertia force, Coriolis force and centrifugal force on the dynamic behaviour of the
inclined plates subjected to moving loads. Numerical results reveal that the influences of moving-load speed,
inclined angle of the plate and total number of moving loads on the vertical and horizontal dynamic responses
of the inclined plate are significant in most cases, but the effects of Coriolis force and centrifugal force are
perceptible only in the case of higher moving-load speed. It has been found that the influences of Coriolis force
and centrifugal force on the vertical ðz̄Þ and horizontal ðx̄Þ central displacements of the inclined plate increase
with increasing the moving-load speed.
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